JJG

中华人民共和国国家计量检定规程

JJG 838-93

晶体管特性图示仪校准仪

1993年7月15日批准

1994年6月1日实施

晶体管特性图示仪校准 仪检定规程

Verification Regulation of Calibrator for Transister Speci-ficity
Oscilloscope

本检定规程经国家 技 术监督局于 1993 年 7 月 15 日批 准, 并自 1994年 6 月 1 日起施行。

归口单位: 湖南省计量局

起草单位。 湖南省计量测试技术研究所 江苏省计量测试技术研究所

本规程技术条文由起草单位负责解释。

本规程主要起草人:

王霞荪 (湖南省计量测试技术研究所)

彭正樑 (湖南省计量测试技术研究所)

汤秀英 (江苏省计量测试技术研究所)

参加起草人:

陈南荣 (江苏省计量局)

余力峰 (湖南省计量测试技术研究所)

目 录

_	概:	述…	• • • • •	••••	••••	• • • • •		• • • •		• • • • •		• • • •		• • • • •			••••	(1)	
=	技:	术 多	更求	••••	••••	• • • • •		• • • •					••••	••••			• • • •	(1)	
Ξ	检》	定角	条件		···••	• • • • •		• • • •		• • • •		· · · · ·	••••	· · · · ·	••••	••••	• • • •	(2)	
四	检:	定项	页目	和	金定	方	去…	• • • •		• • • • •		• • • • •	••••		••••			(3)	
五	检	定约	井	处现	運利	1位)	定周	期		• • • •	••••		••••	••••	••••		• • • •	(8)	
附词	ŧ																		
B	绿杉	1	检:	定ü	已录	表材	各式	••••	••••	• • • • •			••••	••••	••••	• • • • • •		(9)	
B (讨录	2	各	种型	世号	被核	议	器的	4主	要打	支术	指标	ź			••••		(12)	
Þf	录	3	使	用者	主确	度プ	j±	0,5	%1	至流	电周	医源:	和重	[流	电				
			流	源有	会定	阶	锑信	号	白~	-化	变换							(14)	

晶体管特性图示仪校准仪检定规程

本规程适用于新制造、使用中和修理后的晶体管特性图示仪校准 仪(简称图示仪校准仪)的检定,也适用于检定晶体管特性图示仪的 组合检定装置的检定。

一概 述:

图示仪校准仪是检定晶体管特性图示仪的专用检定仪器。主要由标准电压源、标准电流源和阶梯信号校准电路三个功能独立的部分组成;有的仪器还设有偏差测试电路。三个功能独立的部分也可以单独制成仪器,组合成为检定晶体管特性图示仪的组合检定装置。

阶梯信号校准常用的有两种方法,即取样电阻法和归一比较法。 图示仪校准仪的阶梯信号校准电路也相应有两种型式。图示仪校准仪 具有量程范围宽,准确度高和操作简便等特点。

二技术要求

- 1 直流标准电压源
- 1.1 输出电压范围, 0.1~5000 V,
- 1.2 准确度: ±0.3%~±3.0%.
- 2 直流标准电流源
- 2.1 输出电流范围, 10~500 nA:
- 2.2 准确度: ±5.0%;
- 2.3 输出电流范围: 1 μA~10 A,
- 2.4 准确度: ±0.3%~±1.0%.
- 3 取样电阻
- 3.1 申阻值, 0.1Ω~10 MΩ,
- 3.2 准确度, ±0.25%~±0.5%。
- 4 阶梯电压归一化变换
- 4.1 V.电压变换范围, 0.1~20 V,

- 4.2 准确度: ±0.3%.
- 5 阶梯电流归一化变换
- 5.1 I, 电流变换范围: 10 µA~2 A;
- 5.2 准确度, ±0.3%。
- 6 偽差多
- 6.1 量程范围, +3%~ ±10%;
- 6.2 准确度,被测档位标称值的±0.5%。

三检定条件

(一) 环境条件

- 7 环境温度; 20±5℃;
- 8 相对湿度, 45%~75%;
- 9 供电电源, 220 V ± 2%, 50 Hz ± 2%;
- 10 周围无影响仪器正常工作的机械振动和电磁干扰。

(二) 检定用标准设备

11 数字多用表 (5位半)

百流电压测量范围, 0.1~1 000 V,

直流电流测量范围: 0.1 mA~2 A:

直流电阻测量范围, 10 Ω~10 MΩ,

准确度, ±0.05%;

输入阻抗。基本量程不低于 1 000 MΩ.

12 高阻分压器 (R≥10 MΩ)

由压范围, 0~~5 DOO V.

分压比, 190:1;

标定准确度, ±0.05%。

13 标准电阻

阻值: 0.01Ω、0.1Ω、1Ω、10Ω、100Ω、1000Ω, 10kΩ、100kΩ、 1 MΩ、10 MΩ;

准确度, ±0.05%。

14 直流双臂电桥

直流电阻测量范围: 0.1~10 Ω;

准确度: ±0.05%.

15 直流标准电压源

输出电压: 0.1~20 V;

准确度: ±0,05%.

16 直流标准电流源

输出电流: 10 μA~2 A; 准确度: ±0.05%。

四 检定项目和检定方法

(一) 外观及工作正常性检查

- 17 仪器送检时应附有仪器说明书和必要附件,非首次检定时应 具有前次检定证书,仪器应标有型号、生产厂名、出厂编号及出厂日 期。
- 18 被检仪器应无影响其正常工作及读数的机械损伤,各旋钮转动灵活,波段开关跳步清晰,定位准确,琴键开关功能正常。
- 19 被检仪器应按说明书**要求进行通电预热**,预热后仪器应能正常工作。
- 20 检定前,被检仪器各开关旋钮应置于仪器说明书规定的初始 档位置或安全位置,偏差表置于关断位置。对于具有机内校准功能的 仪器,应按说明书要求进行机内校准。

(二) 直流标准电压源的检定

21 项目覆盖范围:校准电压、比较电压、Vo电压、Va电压及

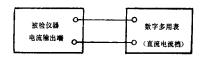


图 1

通用型标准电压源输出电压。

- 22 将被检仪器电压输出端和数字多用表直流 电压档 按图1连接。
- 23 当被检仪器输出电压范围超过 1 000 V 时,必需按图 2 接入 商阻分压器。

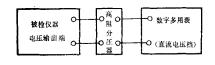


图 2

- 24 被检仪器电压输出端和电压输出操作方法 由 仪 器说明书规 审。
- 25 在不同电压倍率下,依档位从低到高的顺序,用数字多用表逐点测量被检仪器各档电压输出值,将结果记入附录1表1中。
 - 26 按公式 (1) 计算相对误差:

$$\delta_{\pi} = -\frac{V - FV_0}{FV_0} \times 100\%$$
 (1)

式中,V===被检电压标称值,

V₀——数字多用表示值;

F——高阻分压器分压比,F=100,当未接入高阻分压器时,F=1。

- (三) 直流标准电流源的检定
- 27 项目覆盖范围: Io电流及通用型标准电流源输出电流。
- 28 将被检仪器电流输出端和数字多用表直流电流档按图3连接。
 - 29 当被检仪器输出电流范围,超出数字多用表电流档可保证准

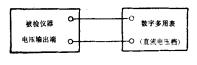


图 3

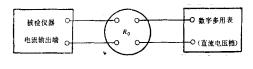


图 4

确度的上限或下限时,需采用间接的检定方法,按图 4 接入标准电阻 R_0 .

将被检仪器电流输出端接至标准电阻的电流端,用数字多用表直 流电压档测量标准电阻电压端上的电压值,按公式(2)计算被检电 流实际值。

$$I_0 = \frac{V_0}{R_0} \tag{2}$$

式中: /。——被检电流实际值; /。——数字多用表示值; // R。——标准电阳阳值。

 R_{\bullet} 阻值的选择要考虑标准电阻通过电流的 能力,也要考虑数字 多用表电压档的分辨力,以保证检定的 准 确 度。当 $R_{\circ}=10$ MΩ时,数字多用表被使用量程的输入阻抗应不低于 1000 MΩ。检定时应注意安全,严禁电流回路断路。

30 被检仪器电流输出端和电流输出操作方法由仪器说明书规

定.

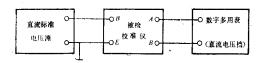
- 31 依档位从低到高的顺序,用数字多用表逐点测量被检仪器各档电流输出值,将结果记入附录1表2中。
 - 32 按公式(3)计算和对误差:

$$\delta_n = \frac{I - I_0}{I_0} \times 100\% \tag{3}$$

式中, I---被检电流标称值;

1。——被检电流实际值。

(四) 取样电阻箱的检定


- 33 检定大电阻时用数字多用表电阻档,检定小电阻时用直流双臂电桥。分别测量取样电阻箱各档电阻值,将结果记入附录1表3中。
 - 34 按公式(4)计算相对误差:

$$\delta_n = \frac{R - R_0}{R_0} \times 100\% \tag{4}$$

式中, R---取样电阻标称值;

R。——取样中阻实际值.

- (五) 阶梯电压 V, 归一化变换的检定
- 35 将被检校准仪、直流标准电压源、数字多用表直流电压档按 图 5 连接
 - 36 将被检校准仪"阶梯负载"开关置于归一化档,按附录1表

4 规定的顺序和数值,设置 V,电压档位和直流电压源输出电压值(变换器输入),记录此时数字多用表示值(变换器 输出),逐档 进 行检定,将结果记入附录 1 表 4 中。

37 按公式 (5) 计算相对误差,

$$\delta_n = \frac{V_{s_0} - V_s}{V_A} \times 100\%$$
 (5)

式中、 V_{*_0} ——变换器输出电压设定值,其值为 10 V, V_* ——数字多用表示值 (V).

(六) 阶梯电流 1.归一化变换的检定

38 将被检校准仪,直流标准电流源,数字多用表直流电压档按图6连接。

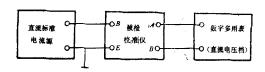


图 6

- 39 将被检校准仪"阶梯负载"开关置于归一化档,按附录 1 表 5 规定的顺序和数值,设置 1。电流档位和直流电流源输出电流值(变换器输入),记录此时数字多用表示值(变换器输出)、逐档进行检定,将结果记入附录 1 表 5 中。
 - 40 按公式 (5) 计算 1。的相对误差。
- 41 当受设备条件限制时,允许按附录 3 的 方 法 使 用准确度为 ±0.5%的直流电压源和直流电流源进行检定。 所 使 用的直流电压源 和直流电流源,4 h稳定度应优于±0.05%。
 - (t) 偏差表的检定
 - 42 按图 1 连接仪器。
 - 43 调准偏差表机械零点,将被检仪器比较电压开关置于10 V档

位, 功能开关置于阶梯位置, 阶梯负载开关署于归一化位置,

44 按下被检"偏差"档位按键,按附录1表6规定的检定点,调节简差微调旋钮,使偏差表指针准确指示到各检定点,分别读取数字多用表示值,将结果记入附录1表6中。

45 按公式 (6) 计算相对误差

$$\delta_n = \frac{V - V_o}{V} \times 100\% \tag{6}$$

式中: V——偏差表被检刻度点电压标称值; V。——偏差表被检刻度点电压实际值。

五 检定结果处理和检定周期

- 46 经检定合格的图示仪校准仪应出具检定证书。检定不合格者 应出具检定结果通知书,并注明不合格项目。
 - 47 检定周期为1年,必要时可随时送检。

附 录

附录 1

检定记录表格式

-	•
	ı

标准电压源检定记录

标 称值(V)	実 际 値 (V)	误差 (%)		
	:	4		
结 论				

-	_	^
-2	8	Z

标准电流源检定记录

标 称 值	实际值	與 差(%)
		·
	:	
结 论		

取样电阻箱检定记录

标称值 (Ω)	实际值 (Ω)	误差(%)
		
	ĺ	
ļ		
结论.		

表4

V。电压变换检定记录

档位 (V/级)	变换器输入(V)	变换器输出 (V)	溴 差 (%)
2	20		
1	10		
0.5	5		
0.2	2	ĺ	
0.1	1		
0.05	0.5		
0.02	0.2		
0.01	0.1]	

表5

1。电流变换检定记录

	• • •		
档 位	交换器输入	变换器输出(V)	误差 (%)
1μΑ	10 μΑ		
2 μΑ	20 μA		
5 μΑ	50 μA		İ
10 μA	100 µA		1
20 µA	200 μΑ	i	1
50 μA	500 μA		1
100 µA	1 mA		
200 μΑ	2 mA		
500 µA	5 mA		1
1 mA	10 mA		
2 mA	20 mA		
5 mA	50 mA		I
10 mA	100 mA		
20 mA	200 mA		
50 mA	500 mA		
100 mA	1 A		
200 mA	2 A		1
结 论	i -		·

表6	1	偏差表检定记录		
量程 (%)	福差(%)	标称值 (V)	实际值 (V)	误差 (%)
10	-10 -5 0 +5 +10	9.0 9.5 10.0 10.5		
3	- 3 - 2 - 1 0 + 1 + 2 + 3	9.7 9.8 9.9 10.0 10.1 10.2 10.3		
结 论				

邻录 2

各种型号被检仪器的主要技术指标

DW 2011 型标准电压源

技术参数	范围	相对误差 (%)	
输出直流电压	0.1 V~5 kV	±0.5	
取样电阻	1, 5, 10, 100 Ω	4.0 5	
4×件电阻	1, 10, 100 kΩ	±0.5	

表?

DW 2020 型标准电流源

技术参数	范 图	相对误差(%)
输出直流电流	10~500 nA	±5.0
	1 μA~1 0A	±0.5

表3

GH 2051 型图示仪校准仪

技术参数	范 周	相对误差(%)
輸出直流电压	0.1≈500 V	±0.5
	1~3 kV	±3.0
輸出直流电流	1~10 μA,5~10 A	±1.0
	. 10 μA~5 A	±0.5
取样电阻	10,100 Ω, 1,10,	±0.5
	100 kg, 1, 10 Mg	

表4	BS4840 型图示仪校准仪	
技术参数	范 团	相对误差(%)
V c 电压	0.1~500 V	± 0.45
V _B 电压	0.1~10 V	± 0.45
lo 电流	10 μA~10 A	±0.45
取样电阻	0.1, 1, 10, 100 Ω	
	1、10 kΩ	±0.25

表5

BJ 4801 型图示仪校准仪

技术参数	池 田	相对误差(%)
比较电压	1~10 V	±0.3
校准电压	0.1~1 V	±0.3
Vc 电压	0.1~1000V	±0.3
V_B 电压	0.1~20 V	±0.3
I c 电流	10 μA~10A	±0.3
V • 电压变换	0.1~20 V	±0.3
I. 电流变换	10 μA~2 A	±0.3
偏差表	±3% ±10%	±0.5

附录 3

使用准确度为±0.5%直流电压源和 直流电流源检定阶梯信号归一化变换

阶梯电压 V。归一化变换的检定

将被檢校准仪、直流电压源,数字多用表直流电压档及换向开关 按图 A 连接。

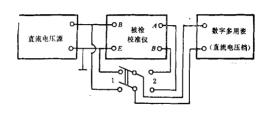
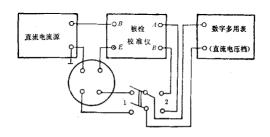


图 A


将被检校准仪"阶梯负载"开关置于归一化档,换向开关置于"1"位置。按附录1表4规定的顺序和数值,设置V。电压档位和直流电压源输出电压值(变换器输入),随即将换向开关置于"2"位置,记录数字多用表示值(变换器输出),逐档进行检定,将结果记入附录1表4中。

按公式 (A) 计算相对误差

$$\delta_n = \frac{V_{so} - V_s}{V_s} \times 100\%$$
 (A)

式中, V.。---变换器输出电压设定值,

一 阶梯由流 / . 归一化态堆的检定

网 B

将被检校准仪"阶梯负载"开关置于归一化档,换向开关置于"1"位置。按附录1表5规定的顺序和数值,设置1,电流挡位和直流电流源输出电流值(变换器输入),随即将换向开关置于"2"位置,记录数字多用表示值(变换器输出),逐档进行检定,将结果记入附录1表5中。

按公式 (B) 计算相对误差:

$$\delta_n = \frac{V_{so} - V_{e}}{V_{e}} \sim 100\%$$
 (B)

式中: V。。---变换器输出电压设定值;

V_{ao}=10V× 电流源输出电流实际值 电流源输出电流标称值 V_a——数字多用表示值(V)。